Procedural Terrain Generation using a Level of Detd System

and Stereoscopic Visualization

Octavian Mihai Vasilovici

Master of Science,
Computer Animation and Visual Effects

BU

Bournemouth
University

August 2013

Bournemouth University

Abstract

Terrain generation using height maps is stillédygised due to its benefits of offering great
control and being a straightforward method. It banused in either real-time rendering or not. For
real time rendering however, sometimes it becomebl@matic when trying to directly renderer a
highly detailed mesh as the polygon number is &gy

This paper is focused around implementing the aintbe latest published method of terrain
generation for real-time rendering, namely, CordimiDistance-Dependent Level of Detail. Besides
the implementation of the algorithm it also emplaysreoscopic rendering and the Instance Cloud
Reduction algorithm for visualization purposes, lhirying to simulate a real case rendering
scenario that is found in modern games. The impfeatien is done using C++, NGL and OpenGL
4.0 core profile.

The current paper, does not try to improve anthefalgorithms presented, but instead it tries

to provide a clean implementation and modular irstgn of the described methods.

Table of Contents

ADSEFACTeiitiet ettt sh bbbt bttt ea et sh et e et et e e bt e b e e Rt e bt e ehe e heesheesaeesnbeenreeaneen i
1. Introduction and IMOtIVAtION..............ooiiiii ettt ettt e e bt e et e e e st e e s beeeaaeeeas 1
2. PrEVIOUS WOKK ...ttt et et ettt et e st e s bt e e s ab e e s bt e e e sabeeaabbe e s beesabeeesabeesbeeeaneeannres 1
3. Technical BACKEIOUNcoo.iiiiie ettt et et et e et e b e e ebe e e s abeeeabeeesabeesabaeessbeesareas 2
3.1 ChUNKEA LOD ..ttt ettt ettt sttt sh e st sate sttt st e b e et e e bt e bt e ebe e st e saeesaeesatesaneenbesaneenneenaneen 2
3.2 Continuous Distance-Dependent LODccuuiiiiiiiiieiciiiie s citee s ssitee s esreee e sstaae s e sstaeesssbaeessssaeesssseeeananes 3
3.2.1. LOD Distances and IMOIPN AFaS....cuiccuuueeieiiieieeeiiiiieeeiittessssteeesssstsaeeessstaeeesesssstesessssseeessssseesessssessesns 4
3.2.2. Quadtree Traversal and SEIECTIONocuui i e e e 5

e B =T { Yol olo) o TR VAT UF: | 14 14 o o [T SPSN 7
3.4 InStanced CloUA REAUCTIONii ittt ettt et et e e st bt e st e e e b e e e be e e sabeesbeeesabeesanaeesaes 11
I R W |11 Y= - 1SR 12

R B A Y=Y o Vo L= T o = o TR UPRRR 12

4. IMPIEMENTATION ...ttt e ettt e e bt e st et e sat e e s bt e s e ab e e s bt e s aeeesabeesaaeeeabeeeareeen 14
4.1 CDLOD IMPIemMENtatioNn ..ccccccuiiiiieciieeeiiiiiieeeeetite st e e sttt e s s eate e e e sbbe e e e sabe e e e s sbbaeesssabeeeessabeeeeesassaessnnsnnen 15
0 A = 4 1 O - £ OO TSPV P PO PRPPROP 16

4.2 Stereoscopic Rendering IMplementationeeioiieeii e et e e e et e e e e ebaae e e raae s 17
4.3 Instance Cloud Reduction IMplementation ... ieeiee ettt e e etr e e et aae e s naae s 19
4.4 User Interface IMpPlementation iiiiieciiiececie et e e e e e srare e e e s stbree e s sneeeeeeanseeeesansaeesnnnseees 19
5. RESUILS @Nd ANGIYSISoooiiiiiiieiiie e e et e e e e s te e e e s te e e e eabeeeeeabaaeesaantaee e ennnraeeeannsaeeeeasaneeeannes 20
T @10 TR0]I F-Jo T 14 o o o OO PO PPSPPPPN 20
5.1.1. Mesh Generation. NO LOD SYStEM ...cccuiiiiiiiiieiciiee s eeee st ee s esteee s sraee s s s eae s s s saae e s s saaaeaassraeaanas 20
5.1.2. Mesh Generation. CDLOD SYStEM ...ccccuieiiiecieeeeeieee e eciree e ertree e eetree e setaee e ssaaaaeeesnsaeessnnsaesannnsaeaenns 21
5.1.3. LOD Selection Based 0N HEIZNEciiiiiiiiiiiiiecsiees ettt e see e s s re e s ssvae e s sebaaeaeans 22
5.1.4. LOD Selection using BOUNING BOXEScciiiiuiiiiiiiiiieiiiiee s eiitee s esieee s ssrtee s ssitae s sssaae s sssaeesssssaeaanns 22
5.1.5. Morphing between LOD EVEIScoiciiiiii ettt ettt e e s sre e s ssbae e s seareaeeeans 23

5.2 Stere0SCOPIC VISUGIZATION ..uviiiiiiiiie ittt e e e st e e e e sab e e e s sabbaeessabeeesssbeaessnns 24
5.3 PerfOrManCE RESUILS. ...ttt ettt st st et st e bt eab e e bt e bt e sbeesbe e sbeesaeesbee s e aaeesaeas 25
5.3. 1. GPU PeITOIMANCE ...ttt ettt ettt ettt ettt ettt et e st et esbe e s bt e atesatesabe s bt e bt eubeenbeenbaesseenseens 25
5.1.2. CPU PeIfOrMAanCeeeiueeiieeiiete ettt sttt sttt et et she e ss e see st e sabe s st e bt saneeabeenseenseenreens 25
5.1.3. Memory Allocation PerfOrmManCe.......cuueiiicciiiie ettt ettt e e e ettae e e aae e e e eaae s e earaeaeens 26

6. CoNCIUSIONS AN FULUIE WOTKcoouiiiiiiiiiieie ettt ettt et s et e st e e s e e e s s bbeenabeesbeeenne 27
T REFEIEINCES ... ettt e b et e h et e et st e s h e st e e e bt e a bt e bt et e ne e e b e e s r e e bt e s bee et e naesaees 28

1Yo 13 (=) - NP RPURRR 29

1. Introduction and Motivation

Terrain generation and rendering them real-timefrequent requirement in various applications such
as games and graphics engines. Terrain generatom lieightmaps is still very largely used due ® it
simplicity and good control over the generateddierthat it offers.

The simplest way to generate and render a tefram a heightmap is by using the brute force
approach, in which every vertex from the mesh apweads with a pixel read from the read texture. ey
large datasets this is not practically possiblehatit sacrificing a lot of performance and thus &dleOf
Detail (LOD) algorithm it is needed. In short, a D@ystem is responsible with decreasing or incneasie
complexity of a 3D object representation based len distance towards the viewer or any other metric
employed in the graphics engine.

Terrain generation and rendering is vastly usedamputer games where performance is crucial.
Besides the terrain, other object are rendered ather techniques are used, like post processirgrtsff
ambient occlusion, antialiasing, etc and thus Imgithe performance of the engine even more.

While the current paper is focused on terrain g and rendering using a Continuous Distance-
Dependent Level of Detail algorithm, a couple diestmethods were used to better reflect the pednom
and importance of using a Level Of Detail schema neal scenario: instanced rendering of 3D objesiisg

geometry shader culling and stereoscopic rendering.

2. Previous Work

Over the years, many LOD algorithms were develofedhandling terrain rendering. The early
algorithms were executed on the CPU, like the ao#dalgorithm introduced by Duchainea et al. in .99
However, starting with the GPU increase in raw powlee benefit of shifting these algorithms on GleU
became evident.

According to Strugar P.(2010), in the current eahbf modern PCs and game consoles there is little
to no benefit having a terrain algorithm to prodace optimal triangle distribution by using the CHUt
cannot provide enough triangles for the graphigelpe, or if it uses too much CPU processing power
According to Wloka M., (2004) the graphics APliver and the operating system between the CPU &hd G
is also a common bottleneck and thus even a stigplePU-based algorithm can be faster and pravédeer
visual results than a complex one that is execoiethe CPU.

One of the first algorithms to be fully GPU-orietite&vas developed by Ulrich T. in 2002. The
Chunked LOD algorithm is still vastly used duet®ability to get a good detail distribution andaptimally
tessellated mesh. The technique generates stasbemén a preprocessing step which are then sttred
different LOD levels in a quadtree. At runtime, tieeded LOD is computed, extracted and renderedl the

quadtree. When a quadtree with different LOD le®lwet, cracks will appear in the mesh. In ordeavoid

1

this, Ulrich T., (2002) proposes a hybrid solutlmnusing simple triangles that extend verticallyret edge of
the patch to cover the cracks that appear.

In 2010, Strugar F., introduced the Continuoustddise-Dependent Level of Detail algorithm that
starts from the premises of the algorithm develdpedlrich T.(2002) and features a fixed grid megtere
the height information is directly read from thagimap and the mesh is displaced in the vertedeshat
uses a quadtree structure and a predictable canignLOD system.

The selection algorithm assures the on-screemgigadistribution is kept constant and is not

influenced by the distance to the viewer.

3. Technical background
3.1 Chunked LOD

Since the CDLOD algorithm presented by Struga(Z010) builds upon the Chunk LOD algorithm
developed by Ulrich T., (2002), an overview of thigorithm is needed. The algorithm uses a quadtee
store the different LOD levels. At runtime the LO&vels are selected from the quadtree and rendéred.
quadtree nodes with different LOD levels are medgcks will appear around the borders. In ordeiixdhis,
Ulrich T., proposed to use simple triangles thaemra vertically at the edge of the patches to calhese
cracks. This means that the bottom edge of a teamgeds to extend below the full LOD of the messtha
edge of the patch and has to extend below any ldessimplification of the maximum LOD.(Cervin A,
2012)

The rendering of the terrain chunks (nodes) isedmsed on the distance to the viewer(camera). This
means that for a certain view, chunks are seleited the quadtree in order to match the fidelitytioé
terrain mesh. Each chunk has a maximum geometrir exssociated and bounding box volume. The
calculation of each node to be use,d is done bjoil@ving formulae:

1)

_ 2k
P=D

(3.1)

p - maximum screen space error that a selected cogieX) will result in
d - maximum geometric error associated with the node
D - distance from the camera to the closest pditti@node.

K - is a perspective scaling factor that takes atoount the size of the viewport and field of view

viewportWidth

HorizontalFOV
n 2

2ta
(3.2)

The rendering of a node it is done by traversing tjuadtree from the root using a predefined
maximum tolerable screen space error. If the cumede is acceptable by calculating the maximureescr
error using (1.1) formulae then it is rendered.eDtlise, if the current node's error is too larpe, traversal
continues with the children of the node.

In order to avoid the "popping-in" visual effeth&t normally appear when a parent node is selected
with a child node for rendering, a small morph &nlg used for each vertex on the vertical coorédin@he
morph parameter is the same for the whole nodenidrph parameter can have two possible valuestt@if
node is about to split and 1 if the node is abouherge. This behavior determines the consistemey l0OD
switching.

The morph parameter can be calculated with the dfe(1.1) equation:

2p
tmorpn = ClamP(T -10,1)

(3.3)

tmorpn = 0 at the distance where a node is split into 4 smalhes.
tmorpn = 1 at the distance where 4 nodes will merge intodeno

The equation is based around the fact éhat a parent node equéls for the child nodes.

3.2 Continuous Distant-Dependent LOD

The CDLOD algorithm developed by Strugar F., (20&fpands upon the CLOD algorithm by using
a continuous morph between LOD levels. It alsosigeme of the existing problems in the CLOD aldonit
and the mimaps algorithm by Asirvatham A., presgimeGPU Gems 2 (2005).

One major problem of the mipmaps algorithm is thatLOD is basically based on two-dimensional
components (latitude and longitude) of the viewesifion while ignoring the height. According to &jear F.,
(2010) this results in an unequal distribution adsim complexity and aliasing problems when the ofesds
at a higher position above the terrain mesh whiéedetail level still remains higher than actuakgeded.

The CLOD algorithm developed by Ulrich T., (2002)proves upon the limitations of the mipmaps
method, by using a LOD function that provides apragimation of the three-dimensional distance-based
LOD which is the same over the whole node. The amlwidrawback of this method can be easily seen in
normal scenarios encountered in modern games vihererrain is very uneven and the position andhiei
of the viewer changes quickly thus resulting in padetail distribution or movement-induced rendering
artifacts. It can also have integration difficudtivith other rendering systems since the unprdaietaOD
system can cause rendering errors such as meskeictien or floating of other 3D objects placedtbha
terrain. (Strugar F., 2010)

The CDLOD algorithm solves all these issues by legipg a fully predictable LOD distribution

which uses a direct function of three-dimensionatathce across all rendered vertices. In cont@mdhé
3

hybrid method used by the CLOD algorithm for fifjicracks, the CDLOD one does not require the use of
any additional geometry for stitching. Insteacg thigher level terrain mesh is fully transformetbithe
lower version before any switching occurs. Anothenefit of this method is that also no "poppingpegrs

when transitioning from one LOD level to the other.

3.2.1 LOD Distances and Morph Areas

The first step of the rendering is the selectibnthe nodes from the quadtree. This selection is
performed every time the viewer(camera) moves. qiedtree depth always corresponds with the level of
detail. This constraint is introduced in order ttowa the same grid mesh to be used in renderingyeve
guadtree node while maintaining a fixed trianglarto

Based on the above, a child node will always Hatimes more mesh complexity per square area than
its parent since a child node will occupy a forfithee area. Thus, each successive LOD level willez 4

times as many triangles and contains 4 time modesithan its parent. (Strugar F., 2010)
|: == _ LOD 3
AL LoD 2
' - _I :'i H \ i) @ Lop1

B R prE SR fEES BT LoDo

Fig. 3.1 Quadtree and LOD layers - Strugar F., 2010

In order to know what node to be selected in eagion, distances that cover each LOD level need to
be pre-calculated before the selection is donesétstances are then saved in an array of LODesang
Based on the fact that the complexity differencénben each successive LOD level is four as per the
algorithm design, the difference in the distanceeced by them needs to be close to 2.0 in order to

accomplish a relatively even triangle distribution.

12 4 8 16 32
Il

m maih & maorph area
L1 L2 LoD 3 LOD 4 LoD S5

Fig. 3.2 Distribution of six LOD ranges - Strugar 010

The smooth LOD transition is done by defining arpimoarea in order to mark the range along which
the higher complexity mesh will change into a lowee. According to Strugar F., (2010) these areasrc
around 15%-30% at the end of each LOD level.

3.2.2 Quadtree Traversal and Node Selection

After the array containing the LOD distance isatee, it is used in the selection of nodes reptaggn
the currently observable part of the terrain. Thadjree is recursively starting from the most disteodes (
less detailed mesh) going down to the nearestt(cheisiled mesh) ones. This selection is later deed

rendering the terrain. (Strugar F., 2010)
The pseudo code for the algorithm presented bybeattescribed as:

bool Node:: LODSd ect(rangeq[], lodLevel, frustum)
{
if not node_Bounding_Box_Intersects Sphere(ranges[lodLevel |))
return false;
if(lodLevel == 0)
Add Whole Node To Selection_List();
return true; // we have handled the area of our node
elseif not node_Bounding_Box_Intersects Sphere(ranges[lodLevel-1])
Add_Whole_Node To_Selection_List() ;
ese
foreach(childNode)
if not child_Node.LODSd ect(ranges, lodLevel-1, frustum)
Add_Part_Of Node To Selection_List(childNode.ParentSubArea)
return true; // we have handled the area of our node

Since the LOD level selection uses the actual tbeeensional distance from the viewer, it worksreotly

for every terrain configuration and any viewer lgy

"r . 1 'I'j | | ..!I'l T . '
Fig. 3.3 LOD Selection at different heights - Sau§., 2010

The rendering of the terrain is done by iteratthgopugh all the selected nodes. The continuous
transition is done by morphing the area of eackllevto a less complex one to achieve a seamlassition
between them. (Strugar F., 2010)

Unlike the CLOD algorithm were the morphing is doper chunk in the CDLOD algorithm the
morphing is done per vertex. Each nodes suppdranaition between two LOD levels: its own and tiest
and previous ones. The morphing is thus, doneeanvéitex shader. The distance between the vienwkman
vertex must be calculated in order to determineatheunt of morphing that is needed. This step tesgary
in order to avoid the seams as the vertices omdloe's edges must remain exactly the same andteam
the neighboring nodes. Strugar F., (2010) definesgh vertex as being a grid vertex that hasarrigoth
of its grid indices (i, j) as an odd number, arsdcibrresponding no-morph neighbor as having tledioates
(i—i/2, j —j/2). The morph operation will changgery block of eight triangles from the more dethimesh
in a block of two triangles corresponding with thes detailed mesh by gradual enlarging two tiesgnd
reducing the remaining six triangles into degetgetaiangles that will not be rasterized. This @

produces smooth transitions with no seams or Ttjans as it can be seen in the following image:

I = —Hp= 1~ - 1~
= e e e o g
L~ //’ -

Fig. 3.4 Grid Mesh Morph Steps - Strugar F., 2010

3.3 Stereoscopic Visualization

Many methods and hardware for visualizing sterepisc context exists today. However, the
principles of rendering in stereo 3D are the sdmeontrast to plain 3D (monoscopic) renderingaistereo
context the same scene needs to be rendered twes: tone time for the left eye and one time forright
eye.(Mishra A., 2011) In stereoscopic visualiza@mother parameters from optics is introducedalfze.

According to Mishra A., (2011) the human visuateyn requires depth cues from a flat image in
terms of how much a specific object shifts latgralkttween the left and the right eye. The parafakefined
as this kind of displacement. Thus, the parallae mimeric value which can be calculated and @fges can
be positive, zero and negative. In practice thalfz¢ is created by defining two cameras for thiedad right
eye separated by a distance, called interoculgardie or eye-separation and by having a planecattain
distance along the viewing direction at which tlaegtlax is zero. Objects that exists at a pargblaxe of
zero will be at the same depth as the screen (sctegth). Object closer to the camera will seerbe@ut of
the screen (pop effect) while objects farther tttegn plane of zero parallax will be inside the soréagush

effect).

left eye
---------- g
g
£ z
2 Y
o
w -
o e
& right eye €
. v3

convergence

Fig. 3.5 Parallax resulting at different depthsisiMa A., 2011

While not being crucial when implementing steremsc rendering, calculating the parallax can have
substantial importance in the planning of the stppase and overall range of usable parallax in the

application.

According to Mishra A., (2011), parallax can beccédted as follows by using the intercept theorem:

v
Mpo
Q
P
Q
w
P
left eve
L oM
v
A
D Y
* left eye
right eve g T:
R
z
D Y
w right eye o
R
c (e
a) Vertex beyond convergence point b) Vertex cloglean convergence point

Fig. 3.6 Parallax resulting at different depthsisivMa A., 2011

a) for a vertex that is locatedatdepth and beyond the convergence distance:

PQ VQ
IR _ VR
(3.3.1)

By the similarity ofAQVM ~ AVRN
VQ VM w-C

=—=——=1-C/w
VR RN w
(3.3.2)
Thus,
PQ p c c
IR-p T g<=p=bd-0)

(3.3.3)

b) for a vertex that is closer than the convergehisence:

Qv
PO_QV__ Qv _ R
LR VR QR-QV 1_%
(3.3.4)
SinceVM [|RN :
v _vM_C-w_
QR RN c
(3.3.5)
Thus,
i—Q—%—1;76,/C=£—1<=>p=—D(1——)
(3.3.6)

The negative sign in the above equation impliest tine vertex projections a that are on the

convergence plane are on opposite sides as thesporrding cameras. (Mishra A., 2011)

Thus, the variation of the parallax with the depthhe vertex for a specific convergence distanu eye-

separation can be drawn as follows:

Eye Separation (D)

I > vertex depth (w)

parallax (p)

convergence distance (C)

Fig. 3.7 Parallax budget of a vertex based on agaree and separation - Mishra A., 2011

As discussed above, for stereoscopic renderingradamera setup needs to be set. A representati@uch

a setup can be viewer in the following image:

o]

Fig. 3.8 Parallel asymmetric frustum - Mishra 2012

In the above image we have two view frustums:
- one originating at L (left eye)
- one originating at R (right eye)

- the distance LR is the eye separation, so tteebffom the origin for each eyeffs

As it can seen in the above picture there are thamtric frustums. This is done in order to fix tregtical
parallax which can occur if a "Toe-in" method isngeused. (Bourke P., 1999) In the above image are c
clearly see that each frustum is parallel to thieeotand thus the name "Asymmetric frustum parallel

projection”.

The frustum for each eye can be calculated asvistio

i

2 near
right-left 0 A 0
2 near
. top-haottam B 0
1] 1] C D
| 1] 1 -1 1]
_ right+lerft
~ right-left
= top+hottom
top-bottom

10

Fig. 3.9 Projection Matrix calculation in OpenGMSDN

OFOVy
2

top = Dyeqrtan

(3.3.7)

bottom = —top
(3.3.8)

The half-width of the virtual screen is:

OFOVy
2

a = TgspectCtan

(3.3.9)

Looking at the left frustunALB, the near clipping plane intersects itdats; distance ofLL' andd,;gp;
distance right of L'

dleft _ dright — Dnear
b c C
(3.3.10)

(3.3.11)

Deye
c=a+—
2

(3.3.12)

Calculatingd,.s; andd,.;4p; for the right frustum is done by swappin@ndc in the above equation.

3.4 Instance Cloud Reduction

In order to better show the stereoscopic 3D vizaabn effect, extra geometry was added to the
terrain mesh. The approach used was developed kgsHa, 2010.
The rendering process involves two steps:
- A culling pass performed in the geometry shader.

- A rendering pass using instanced rendering.

11

3.4.1 Culling Pass

The first pass will be provided with the infornmatiabout the instances on which the frustum culling
will be performed. This information will be fed ging two inputs:
- Instance transformation data
- Object extents information containing the instaposition and an extend based on which a bondixg b
volume will be created and culling performed. (Rakb, 2010)

The culling pass shader consists of a vertex aadngtry shader. The vertex shader determines if the
actual object is inside the view frustum or not aedds a flag to the geometry shader. The georsbager
will then emit the instance data to the destinabaffer if the object is visible or will not emitgthing if the
object is outside the viewing volume.

In order to capture the primitives emitted by ge®metry shader a transform feedback is being used.

The capturing is stored in another buffer objeat thill be used in the actual rendering pass.

The pipeline of the culling pass can be observatarfollowing image:

Vertex Shader

erfarming view

“eriex Buffer

rsiance Laa 1 CAINING

Transform
Gle?rrj?_t__rhﬂlsf*_ffﬂ?' Feedback Buffer
| ! I _-|":'i':'-.||"!

Fig. 3.10 Culling Pass Pipeline Diagram - Rakos2D10

3.4.2 Rendering Pass

In the second pass the data buffer used for gidtie primitives from the culling pass must be
sourced by reading the asynchronous query resolts the first pass.

The whole pipeline for the technique can be sedhdrollowing image:

12

Verex Buller

Vertex Shades
contaning porfomming view
Instnrcea Dt = {rushom culing

Geomatry Shader
decides whan 10

emi| primitive

Butfer Object
containing Cubed

Irstince Dot

usad for the achual M

Fig. 3.11 Renderin(Pipeline Diagram - Rakos D., 2010

This technique has numerous advantages over otttbiods includin:
- Reduced amount of processed data

- No need for any space partitioning methods sineetiiling is done dynarr
- Can handle large amountiaktanced objec

- Scales well with an increased number of insta

The obvious disadvantage is that it requires aragdss for culling and it uses asynchronous gsl
to determine the number of visible instar. (Rakos D., 2010)

13

4. Implementation

The implementation of the algorithms was done ipe®@GL using C++, the NGL lib for 3D
mathematical manipulation and Qt for the userrfate. Since the project is rather big in scoparefal
consideration went towards the application desigardware and driver limitations also provided asty
influence in the final design of the applicatiomeTaim was to provide an application that is fleileasy to
use, has all the needed parameters exposed witbquiring the source code to be compiled each time,
modular and coherent in design, is fully Ul driveamd the visualization can be done either in a muois or
stereoscopic context based on the hardware thahston. The application emphasis on correct steguc
rendering, correct implementation and usage of Gp.OD terrain generation algorithm. The instanced
rendering of vegetation objects was employed amlyetter reflect the stereoscopic effect and ttebsee the
depth of the rendered scene. It also proves ortheokey aspects of the CDLOD algorithm, that ofieras
integration with other algorithms.

The basic diagram of the application is descrilmethé following image:

OpenGL application

Stereoscopic Setup
Module

User Interface Stand-alone
application

Terrain Generation
Module

Vegetation Instanced Rendering
Module

Read from file | g1ohal Configuration Write to file
File

Fig. 4.1. Application overview.

Instead of creating an application that also hmagrmbedded user interface it was decided to create
two applications instead: a pure OpenGL applicataond a user interface application that controls the
parameters. This decision came based on the fatt diwrently the nVidia drivers offer quad-buffer
stereoscopic rendering under OpenGL only if aniagfbn is running in exclusive fullscreen modethé
application runs in window mode or window fullsanemode the graphics driver will not create theesier
context.

In order for the Ul to communicate with the maipedGL application, it was decided that all the

important parameters for terrain generation anthited rendering of the vegetation must be exptsed

14

single configuration file that can be accessed bth applications. A full class diagram can be sgen

Appendix A.

In the above diagram it can be easily seen thelh @ the methods resides in its own contained
module and thus, each module can be enable orleiis#bneeded: The stereoscopic setup module can be
easily swapped with a monoscopic one, the vegetdtistanced rendering module can be disabled or

swapped with any other geometry rendering modute, e

4.1 CDLOD Algorithm Implementation

The implementation follows the rules describedhia third chapter and is based on the translation o
the DirectX source codstrugar P.(2010}t also features some of the optimizations preskintehe original
paper. Since the desire was to be able to pusalgoeithm and LOD system to the maximum some dessi
were made.

One of the first decisions was the selection eftilpe of variable that will hold the grid inforraat.
Initially, a vector was selected. Based on the papbélished byStrugar P.(2010}he grid latitude is stored
in the X component, the longitude is stored inYheomponent and the height in the Z component\acior
of 3 elements. Thus a vector of a vector of 3 camepbwas needed. Since a grid can be seen asia ofatr
x n elements it quickly became obvious that a weatosector of a 3 component vector was requiredriter
to keep all that information. But. instead of chegta vector of a vector, it was decided to useféset in the
vector in order to store all the rows and columhghe grid in a single vector. In an attempt tottier
optimize the performance the vector was swappetl witdynamic array, although based on testing, the
performance is almost the same and probably tresrdbprovide any benefit due to the extra careledéor
handling the release of the allocated memory.

The generation and creation of the base terraishnusing triangle strips is based around the same
technique described I§trugar P.(2010) the source code accompanying his paper.

To keep the modular aspect of the applicationthallgrid generation methods were encapsulated in a
couple of classes using the template specializagionniques described by Macey J. 2012. Theseedadso
provides the mechanisms needed for selection aesufshe array used in the node selection algorith
presented in chapter 3.

One of the improvements of memory costs describpedstrugar P.(2010)s to keep only the
maximum and minimum height values a bounding boxltave, rather than all corner points that creade t
bounding box. For visualization purposes, anottesscwas created that extends upon the boundinglheg
in order to be able to visualize these boundingebaxsed for selection. However, for the algoritomvork

properly this class is not needed.

15

The heightmap texture information that will be tedthe vertex shader was decided to be stored in a
simple class, using a vector for the height infdiaraand other variables and methods that are redjdor
OpenGL integration.

4.1.1 Terrain Class

This class is the core of the terrain generatioth Bendering algorithm. It contains all the methods
needed for generating the terrain mesh, creatiagyttadtree, selecting a node from the quadtrederizmg
the selected nodes and calculating the viewer rdistaised in the nodes selection. It features twim ma
methods, the initialization method and renderinghoe.

The initialization method is run only one time,the start of the application. It is responsible fo
reading all the parameters from the configuratitmand the heightmap. The reading of the heightteature
is done by the QImage class and it handles botysgate and color textures. In case of color testuhe
height information is assumed to exist on the fe@hoel of the texture. The height information et in a
bidimensional array of a maximum capacity of 409B&L This limitation is imposed in order to avoid
memory allocation problems. Initially, the decisiaras to re-size the heightmap to the actual sizéhef
generated grid. However, based on tests, it wadised that Qlmage is unable to resize only tdesaa
picture and thus, in order to get a correct repriadi®n of the height information, currently thettee file
must be manually re-sized at the same size agitheged in the terrain generation.

Once the parameters are read from the configuréite the actual terrain mesh is being generated
using the information from the heightmap. This iempentation is based around the algorithm of CLOD
described by Ulrich, 2002 as an pre-step beforeafpdication starts. The normals are also caledlat this
step based on the tangent and binormal vectors.

Afterwards, the mesh is partitioned and the qe&dis created based on the generated bounding boxes
following the algorithm described in chapter 3.

The number and size of the bounding boxes is @deaased on the node size that is provided in the
configuration file and thus the accuracy of the Leddection can be fully controlled.

Next, the texture units are created for the rendestep, including the color textures and the
heightmap texture used in the shaders. Since puogkederrain texturing is another topic in itsefér
visualization purposes the "splatting” method oftueing was selected. In short this methods corsfist
texture that uses each color channel as an alpdnanel in the selection of the texture images totbized.

This method is still highly used since it givessirbig freedom and is easier to use and implement.

The rendering method is used per frame and isoresiple for calculating the distance from the
camera to the nearest point of a bounding box. Basethis distance a specific LOD level is seleciBuke

selectLodDraw() method is where the heart of trmingve selection algorithm described in chaptes 3

16

implemented and the implementation is straightfedv@nce a LOD level has been selected the actual
rendering is done by the drawPatch() method. Thathod consists of loading all the parameters tshasler
and rending the selected node as a series of leiatgps. The drawPatch() method is called foreaade
that is selected for a specific LOD level and isoatesponsible for drawing the bounding boxes udsed

visualizing the LOD selection.

Another method to mention is MoveOnTerrain(). Timsthod tried to keep the camera position at a
specified height above the terrain to simulateaiarcollision. This is done by extracting the piasitof the
viewer from the inverse of the view matrix as itisne in the rendering method when the distanca tie
camera and a bounding box is calculated.

The current implementation features a configurabi@ber of LOD levels and a fixed LOD level that
will always contain the high resolution mesh. Thesiis being generated as a series of trianglesdtased
on the grid size provided by the configuration.file order to be able to control the scale of #reain mesh
and keeping the same triangle distribution, thd gdale parameter was introduced. The resulteditemesh
size in units is a direct result of the grid sizaltiplied by the scale. The obvious advantage & th the
ability to generate a big scale mesh with a retalbwv number of triangles. To give even more cdrtvdhe
type of generated terrain, the height of the gerdrenesh can also be directly controlled and thasiging
different results using the same heightmap infoimnatAdditionally, for each LOD level the distanadere
the next LOD level is selected (the LOD brake) banconfigured and is also exposed in the configumat
file.

The morphing of the vertexes is done in the GL8ttax shader. The position of the current vertex is
calculated based on the VertexID and InstancelDnftbe instanced rendering. The morphing factor is
calculated as series of binary operations and edorther tweaked from the vertex shader.

Various other methods are used to facilitate tisaealization of the LOD levels including coloring
each LOD level separately, displaying the boundioges used in the LOD selection, toggling wireframe
order to see the triangle distribution across éimel$cape and different shading techniques.

The current implementation does not feature apeg ©yf frustum culling. This decision was done on
purpose in order to see the real impact on perfocmaising this method. Implementing a frustum oglli
technique is trivial and can be done by checkinghelaounding box used on LOD selection against the

frustum volume and not sending to the renderinglpip those nodes that fail.

4.2 Stereoscopic Rendering Implementation

The stereoscopic rendering was developed as d-atane module. The StereoCamera() class is
based on the ngl::Camera() and expands on it ierdadfacilitate the stereoscopic needs. It istlaribund the
"parallel axis asymmetric frustum" algorithm debexd in chapter 3. It consists of methods for sgttive left

and right camera perspectives and camera posit@mas other methods to ensure a coherent camera

17

manipulation. Some of the methods inherited froertgl::Camera() class were overridden in order¢ate a
movable camera. It was decided that instead of ngpttie virtual world and keep the camera to a figiton,

to keep the world at a fixed position and move t¢henera location around the world as described én th
original algorithm byStrugar P.(2010)The StereoCamera() class does not employ any df/pelvanced
camera system, that would be normal in this scenéike an orbit camera. For simplicity, it providéhe
necessary methods to move the position and thedbpbkint around and it performs the yaw, pitchl, aod
slide functions.

One problem that quickly became evident was tketfaat in the current implementation no central
pivot exists and thus, when a rotation bigger tB@rdegrees around the camera up axis exists, tihane
right eye can become inversed. In order to overctiriseproblem a third monoscopic camera was cretated
act as a central pivot for the stereo one. Theestcemever rendered through this camera, but idsaahe
camera manipulation functions are performed oafigr which the position, look and up vector aradrand
the left and right eye perspectives and positisasipdated.

Based on the SIGGRAPH presentation provided bye&atS., et al (2010) and the algorithm
described in chapter 3, the following parametemsy pdn important role in setting and manipulating th
stereoscopic visualization:

- Separation = interocular distance /screen width
- Convergence = distance to the zero parallaxeplan

These two parameters are exposed to the usermanukecchanged from the application user interface.

The OpenGL implementation consists of:

- Create a stereo context

- Query the OpenGL API to see if such a contestigported by the platform.

- If yes, stereoscopic rendering is supported hadéndering is done using the QuadBuffering teni
- If not, rendering is done in plain 3D, using teubleBuffering technique.

The QuadBuffering technique consists of a setawkband front buffer for the left and right eye.
Thus, the scene is rendered two times: one tintleeifeft eye, and one time in the right eye. Tliedad right
eye are automatically swapped by the OpenGL APIndnérame is rendered. By rendering the same scene
two times, theoretically the performance hit wob&l50%. However, in practice this is not alwayg fisince
in order to keep the screen and active shuttesgtasynchronized, the vertical synchronization («$ys
automatically enabled by the driver in order foe fipplication not to render more frames than isiglaly can
actually show.

Since not every platform is capable of renderimgistereo context and to ensure compatibility, a

monoscopic rendering method was also created anscine is rendered from the left eye perspectilye o

18

4.3. Instance Cloud Reduction Implementation

In order to better reflect the effect of stere@scoendering and depth perception it was decited t
additional geometry should be rendered on the tzapms

The implementation of the method is the same astte described in chapter 3. The method was
created and integrated in its own module. It carafisan initialization phase, in which the sameghéinap
texture is being read in order to get the heigftrination, creating the geometry instances by utiegheight
information and randomly placing the geometry oa térrain using as maximum coordinates the sanae gri
size used in terrain generation.

The rendering phase is a two steps process. Ififdtestep the, culling shader is being used to
determine which geometry is visible and in the sélcstep it is rendered. The number of geometraimtss
is exposed to the user via the configuration fileis technique does not employ any type of LOD rae&m
of rendering the instances meaning all the visg@emetry will have the same number of polygons. The
reason behind this approach, was to simulate thyg@o complexity and performance impact that woenést
in a real case scenario. The rendering of the nosth geometry can be disabled, at runtime, from the

application interface in order to reflect the perfance difference.

4.4. User Interface Implementation

The application offers an on-screen user interfacenable different options in order to display how
the CDLOD algorithm is working and to control thereoscopic rendering. Since stereoscopic rendésing
bound by the hardware and the nVidia drivers culyesupport QuadBuffered rendering using 3D Vis@mn
consumer graphics cards, only under Windows, wihenapplication is set in exclusive fullscreen, #sw
decided that the main application will not have amgphical user interface. Instead, a setup wixead
created that controls all the parameters of thaitegeneration and from which the user is ablasmch the
OpenGL application. The setup wizard is also resjide for the configuration file generation without
requiring the user to manually edit any files.l#oaconsists of features like, generating a defawifiguration
file, if none exists, saving and opening alreadistaxg configurations in order to give the usei ontrol

over the application.

19

5. Results and Analysis

A special attention was given when developingapglication in order for it to run on both Linuxdan
Windows platforms. However, due to the current n&/idriver implementation the stereoscopic context ¢

only be created and used only under Windows whergwasconsumer graphics card.

5.1 CDLOD Algorithm Results
5.1.1 Mesh Generation - No LOD System

Fig. 5.1.Terrain mesh at maximum detdi0Z4 x1024 grid size. Grid scal®.0. Total mesh size in units:
2048x2048. Height scale factord50). No LOD mechanism employed. Total triangle co@388608. Number
of draw calls65536. Frames per seconti5 (on a GTX 590 GPU).

20

Fig. 5.2.Terrain mesh at maximum detdiP§ x128 grid size. Grid scald6.0. Total mesh size in units:
2048x2048. Height scale factod50). No LOD mechanism employed. Total triangle couBt072. Number
of draw calls:1024. Frames per secon#20. (on a GTX 590 GPU)

5.1.2 Mesh Generation - CDLOD System

Fig. 5.3.Terrain mesh 1024 x1024 grid size. Grid scald.0. Total mesh size in unitgl096x4096. Height
scale factor450). CDLOD with4 additional levels that break 256, 512, 1024, 2048 distance in units. Total
triangle count56576. Number of draw call22. Frames per secon#200. (on a GTX 590 GPU)

21

Comparing Fig. 1. where no LOD system was used ®ig. 3. where a CDLOD mechanics was used with 4
additional levels, the performance improves fromfrines per second to 1200 and clearly shows tteetdi
benefit of using such a system without sacrificimy perceivable detail of the terrain.

5.1.3 LOD Selection Based on Height

a) Camera at bigger height above the landscape b) Camera at a smaller height above the landscape

Fig. 5.4.LOD selection based on camera height.

5.1.4 LOD Selection Using Bounding Boxes

a) Camera very far away b)Camera at a clatistance. The quad

partionioning and selection can bseobed.

¢) Camera coming closer to the terrain.

Fig. 5.5. LOD Selection from the quadtree

22

a) Node size @4 units b) Node size & units

Fig. 5.6. Partinioning control.

5.1.5 Morphing between LOD levels

The morphing between the LOD levels is performethim vertex shader as described in chapter 3 aAd 4.

comparisson between the result obtained in theiGgtign and the original implementation by Strugar

a) Morphing as seen in the original CDLOD b) Morphing as seen in the current aapion

implementation by Strugar F., 2010
Fig. 5.7. Morphing of LOD levels

23

5.2 Stereoscopic visualization

The stereoscopic implementation is based on tperighms and methods described in chapter 3 and

4. In order for it to work it requires special haate. By default, if no such harware exists, thpliaption

will render in a monoscopic context.

a) Scene rendered using the left eye projection b) Scene rendered using the right eyggption

c) Both eyes rendered (left + right) as seethermonitor without glasses.

Fig. 5.8. Stereoscopic rendering

24

5.3 Performance results
5.3.1 GPU Performance

GPU Model FPS in stereo 3D | FPS in stereo 3D | FPS in 2D FPSin 2D GPU usage

- normal scenario | - only terrain - normal scenario | - only terrain 3D /2D
nVidia GT 555m | 60 60(66% GPU) 96 325(76%GPUB2% / 89%
Nvidia GTX 580 60 - - - 25% / -
nVidia GTX 590 | 60 60 (15% GPU) 360 1000 60% / 92%
nVidia GTX 660 185 - 150 - -
nVidia GTX 670 120 - 208 - 51% / 88%
nVidia GTX 680ti | 270 - 270 - -

- normal scenario = terrain mesh + vegetation usinthe Instanced Cloud Reduction method

- only terrain = terrain mesh

The above table presents the performance hit memugeneration GPUs. The values from the table
were provided by the users from the GeForce Forwmsn being provided with a test build of the
application.

One important thing to mention is when renderingt@reoscopic 3D, the driver automatically capsnéu
VSYNC ON) the framerate to the refresh rate ofrtianitor. It is possible, however, to disable thjsforce
from the driver. The bold entries are the resuliteests conducted in all scenarios by the authahisfpaper.

It can be clearly seen that using a mobile GPWides different results, as the driver branch dsife
Normally, because the all the geometry is rendénexltimes the performance hit should be around 50%.
However as it can be seen, this is not always trusome cases the performance seems to be béiser tive
stereo renderer it is used.

The dataset used in all the tests consists288 x256 grid size. Grid scald.0. Total mesh size in
units: 1024x1024. Height scale factor250). CDLOD with 3 additional levels that break &g, 256, 2048

distance in units.

5.3.2 CPU Load

CPU Model Number of Physical| Utilization during
Cores (no HT) runtime

Intel i5 2430M @ 2.4 Ghz| 2 25%

Intel i5 3570k @ 3.8 Ghx 4 25%

25

The CPU usage measurements were done on two abhigsbeing a mobile processor and the

secondary a desktop one. In both cases the sameawofadtilization was seen.

5.3.3 Memory Allocation Performance

Terrain Type Total Program
Allocated Memory
256 x 256 grid size. 64.628 MB

512 x 512 grid size. 77.388 MB
1024 x 1024 grid size. 132.176 MB
2048 x 2048 grid size. 381.832 MB
4096 x 4096 grid size 1.115.220 MB

The values were measured on a Windows platforre. rfEported allocated memory is done by the

operating system for the whole application and sightly differ on the Linux platform.

26

6. Conclusions and future work

Procedural terrain generation from heightmapsilisvastly used. Employing a LOD system can save
an application a lot of computational and rendetintge, as shown in the Results chapter. By usihg®8®
system when rendering a generated terrain meshpén®rmance of an application can be increased
tremendously, sometimes going from 16fps to evedDfis, as shown above. The downside of this, isitha
requires additional memory. The CDLOD algorithm lempented vastly improves the performance and the
quality of generated terrain, improving on all fhrevious LOD algorithms and in the same time beiegy
flexible. A couple of downsides must be mentioneaugh. It is limited to only selecting between tl©D
levels. Each heightmap and terrain generation reguinding the optimum parameters for LOD selettio
distance (LOD break), size of the grid mesh in ptdebe effective and thus, sometimes can becotieus.
One of its big advantages is its ability to harldtge triangles count and in the current implemigoas only
bound by the type of platform is running on in terwf memory allocation. Based on testing, trying to
generate a grid mesh of anything higher than 409&&4will always fail with a bad allocation on 32-bi
systems since the operating system cannot allocate than 2 GB for an application.

The implementation in its current form does natdia terrain streaming since it wasn't in the scope
of the project. However, the current implementatian be vastly improved by:

- improve the implementation to work with any tygfegrid size, not only square

- using tessellation to further increase polygoantstarting from a low resolution grid

- using subdivisions with tessellation to even Hartimprove the quality of the landscape, as desdrby
Mistal B., 2013

- using a streaming method as ROAM to handle eseyet terrains by updating the vertex buffers &l-re
time.

- by adding frustum culling for a real case scemasage.

The Instance Cloud Reduction algorithm was sefectaly to help for a better visualization in a
stereoscopic context and was not the main focuth@fdeveloped application. The addition of a bigger
number of polygons that are renderer were usedsaswdation factor of a real case scenario, wheeeGPU
has to render millions of triangles per second. weleer, it can be greatly improved, by adding a LOD
selection mechanism in order to decrease the nuaflplygons that are visible.

27

7. References

Asirvatham A., and Hoppe H., 2006PU Gems 2. Addison-Wesley Professional

Bourke P., 1998D Sereo Rendering Using OpenGL (and GLUT). Available from: ftp://ftp.sgi.com/opengl/
contrib/kschwarz/GLUT_INTRO/SOURCE/PBOURKE/indexih{Last accessed August 2013]

Cervin A., 2012 Adaptive Hardware-accelerated Terrain Tessellation. Available from:
http://dice.se/wp-content/uploads/adaptive_teriaissellation.pdf [Last accessed August 2013]

Gateau S. and Nash S., 20L®plementing Stereoscopic 3D in Your Applications. Nvidia Corportation. Available
from: http://www.nvidia.com/content/GTC-2010/pdfs/2010 @D10.pdf [Last accessed August 2013]

GeForce Forums., 2013.[Test Request)fSereo0 3D OpenGL application. Available from:
https://forums.geforce.com/default/topic/572432¥8slen/-test-request-stereo-3d-opengl-application/ [Last
accessed August 2013]

Macey J., 20120perator overloading and Dynamic Data Structures. Available from: http://nccastaff.
bournemouth.ac.uk/jmacey/ASD/slides/Lecture4OpesattdDynamicDS.pdf[Last accessed August 2013]

Mishra A., 2011 Rendering 3D Anaglyph in OpenGL. Available from:
http://quiescentspark.blogspot.co.uk/2011/05/reindeBd-anaglyph-in-opengl.html [Last accessed Aug04 3]

Rakos D., 2010nstance culling using geometry shaders. Available from:
http://rastergrid.com/blog/2010/02/instance-cuHiming-geometry-shaders/ [Last accessed August]2013

Strugar F., 2010Continuous Distance-Dependent Level of Detail for Rendering Heightmaps (CDLOD). Available
from:http://www.vertexasylum.com/downloads/cdlodéctl latest.pdf [Last accessed August 2013]

Ulrich T., 2002 Rendering Massive Terrains using Chunked Level of Detail Control. Available from:
http://tulrich.com/geekstuff/sig-notes.pdf [Lastassed August 2013]

Wloka M., 2004. Optimizing the Graphics Pipeline. Nvidia Corporation. Available from:
https://developer.nvidia.com/sites/default/fileslatai/gamedev/docs/EG_04 OptimizingGPUPipeline.pdfLas{
accessed August 2013]

Wolfgang E., and Mistal B., 201&PU Terrain Subdivision and Tessellation.GPU Pro 4. A K Peters/ CRC Press.

7.1 Texture References

Dirt texture. Available from: http://www.imageafteom/dbase/textures/grounds/b1dirt012.jpg [Lastessed
August 2013]

Grass texture. Available from: http://threeminuti®o.co.uk/wpcontent/themes/kingsize/images/upload/
GrassTexture.jpg [Last accessed August 2013]

Rock texture. Available from: http://www.texturesro/Stone-Textures/TextureX+gravel+texture+rock+gtav
+street+sidewalk+grey+concrete+Texture.jpg.php {leasessed August 2013]

Snow texture. Available from: http://farm6.statickir.com/5286/5342749399 6bald9b685 o.jpg [Lasessmd
August 2013]

Heightmap texture. Available from: http://www.aleanartin.net/images/surfaceclipmaps/heightmap.jp@sfL
accessed August 2013]

Heightmap texture. Available from: http://read.puaiim/downloads38/sourcecode/windows/
opengl/127140/Demos/Fustrums/Textures/Heightmapg [Ljast accessed August 2013]

28

Appendix A

29

